Package: envi 1.0.0
Ian D. Buller
envi: Environmental Interpolation using Spatial Kernel Density Estimation
Estimates an ecological niche using occurrence data, covariates, and kernel density-based estimation methods. For a single species with presence and absence data, the 'envi' package uses the spatial relative risk function that is estimated using the 'sparr' package. Details about the 'sparr' package methods can be found in the tutorial: Davies et al. (2018) <doi:10.1002/sim.7577>. Details about kernel density estimation can be found in J. F. Bithell (1990) <doi:10.1002/sim.4780090616>. More information about relative risk functions using kernel density estimation can be found in J. F. Bithell (1991) <doi:10.1002/sim.4780101112>.
Authors:
envi_1.0.0.tar.gz
envi_1.0.0.zip(r-4.5)envi_1.0.0.zip(r-4.4)envi_1.0.0.zip(r-4.3)
envi_1.0.0.tgz(r-4.4-any)envi_1.0.0.tgz(r-4.3-any)
envi_1.0.0.tar.gz(r-4.5-noble)envi_1.0.0.tar.gz(r-4.4-noble)
envi_1.0.0.tgz(r-4.4-emscripten)envi_1.0.0.tgz(r-4.3-emscripten)
envi.pdf |envi.html✨
envi/json (API)
NEWS
# Install 'envi' in R: |
install.packages('envi', repos = c('https://lance-waller-lab.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/lance-waller-lab/envi/issues
ecological-nicheecological-niche-modellinggeospatialgeospatial-analysiskernel-density-estimationniche-modelingniche-modellingnon-euclidean-spacespoint-patternpoint-pattern-analysisprincipal-component-analysisspatial-analysisspecies-distribution-modelingspecies-distribution-modelling
Last updated 15 days agofrom:718ee11776. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win | OK | Nov 06 2024 |
R-4.5-linux | OK | Nov 06 2024 |
R-4.4-win | OK | Nov 06 2024 |
R-4.4-mac | OK | Nov 06 2024 |
R-4.3-win | OK | Nov 06 2024 |
R-4.3-mac | OK | Nov 06 2024 |
Exports:lrrenperlrrenplot_cvplot_obsplot_perturbplot_predictpval_correct
Dependencies:abindbitopscaToolsclassclassIntclicodetoolsconcavemancurlcvAUCdata.tableDBIdeldirdigestdoFuturedoParalleldoRNGdotCall64dplyre1071fansifieldsforeachfuturefuture.applygenericsglobalsgluegoftestgplotsgtoolsiteratorsjsonliteKernSmoothlatticelifecyclelistenvmagrittrmapsMASSMatrixmgcvmisc3dnlmeparallellypillarpkgconfigplspolyclipproxyR6RcpprlangrngtoolsROCRrparts2sfspamsparrspatstatspatstat.dataspatstat.explorespatstat.geomspatstat.linnetspatstat.modelspatstat.randomspatstat.sparsespatstat.univarspatstat.utilstensorterratibbletidyselectunitsutf8V8vctrsviridisLitewithrwk