Package: envi 0.1.19

Ian D. Buller

envi: Environmental Interpolation using Spatial Kernel Density Estimation

Estimates an ecological niche using occurrence data, covariates, and kernel density-based estimation methods. For a single species with presence and absence data, the 'envi' package uses the spatial relative risk function that is estimated using the 'sparr' package. Details about the 'sparr' package methods can be found in the tutorial: Davies et al. (2018) <doi:10.1002/sim.7577>. Details about kernel density estimation can be found in J. F. Bithell (1990) <doi:10.1002/sim.4780090616>. More information about relative risk functions using kernel density estimation can be found in J. F. Bithell (1991) <doi:10.1002/sim.4780101112>.

Authors:Ian D. Buller [aut, cre, cph], Lance A. Waller [ctb, ths], Emory University [cph]

envi_0.1.19.tar.gz
envi_0.1.19.zip(r-4.5)envi_0.1.19.zip(r-4.4)envi_0.1.19.zip(r-4.3)
envi_0.1.19.tgz(r-4.4-any)envi_0.1.19.tgz(r-4.3-any)
envi_0.1.19.tar.gz(r-4.5-noble)envi_0.1.19.tar.gz(r-4.4-noble)
envi_0.1.19.tgz(r-4.4-emscripten)envi_0.1.19.tgz(r-4.3-emscripten)
envi.pdf |envi.html
envi/json (API)
NEWS

# Install 'envi' in R:
install.packages('envi', repos = c('https://lance-waller-lab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/lance-waller-lab/envi/issues

On CRAN:

ecological-nicheecological-niche-modellinggeospatialgeospatial-analysiskernel-density-estimationniche-modelingniche-modellingnon-euclidean-spacespoint-patternpoint-pattern-analysisprincipal-component-analysisspatial-analysisspecies-distribution-modelingspecies-distribution-modelling

4.10 score 1 stars 25 scripts 257 downloads 1 mentions 7 exports 81 dependencies

Last updated 10 months agofrom:d8462e3314. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 13 2024
R-4.5-winNOTEOct 13 2024
R-4.5-linuxNOTEOct 13 2024
R-4.4-winOKOct 13 2024
R-4.4-macOKOct 13 2024
R-4.3-winOKOct 13 2024
R-4.3-macOKOct 13 2024

Exports:lrrenperlrrenplot_cvplot_obsplot_perturbplot_predictpval_correct

Dependencies:abindbitopscaToolsclassclassIntclicodetoolsconcavemancurlcvAUCdata.tableDBIdeldirdigestdoFuturedoParalleldoRNGdotCall64dplyre1071fansifieldsforeachfuturefuture.applygenericsglobalsgluegoftestgplotsgtoolsiteratorsjsonliteKernSmoothlatticelifecyclelistenvmagrittrmapsMASSMatrixmgcvmisc3dnlmeparallellypillarpkgconfigplspolyclipproxyR6RcpprlangrngtoolsROCRrparts2sfspamsparrspatstatspatstat.dataspatstat.explorespatstat.geomspatstat.linnetspatstat.modelspatstat.randomspatstat.sparsespatstat.univarspatstat.utilstensorterratibbletidyselectunitsutf8V8vctrsviridisLitewithrwk

envi: Environmental Interpolation using Spatial Kernel Density Estimation

Rendered fromvignette.html.asisusingR.rsp::asison Oct 13 2024.

Last update: 2020-10-27
Started: 2020-09-25